Introdução aos Radianos

AUTORA: Natalia Czopek **VÍDEO**: Khan Academy

REVISÃO: Marina Ayumi Izaki Gómez, Ana Was-Martins, Iva Svobodová

NÍVEL QCER: C1

ÁREA DISCIPLINAR: Matemática
DURAÇÃO: 90-120 minutos

MATERIAIS DIDÁTICOS:

 Vídeo (duração: 00:33:03 minutos) https://medial.phil.muni.cz/Play/26265#!

ou (com legendas)

https://pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radians/v/introduction-to-radians

2. 9 exercícios

OBJETIVO:

O objetivo deste REA é explicar ao pormenor alguns conceitos básicos relacionados com o tema de radianos, como é o grau, amplitude, vértice, reta, semirreta e rotação. Aa mesmo tempo, através da palestra gravada em vídeo publicada pela academia *Khan Academy* são explicados os cálculos de diferentes tipos de ângulos. É o objetivo deste cenário desenvolver, em particular, a competência textual, por meio de exercícios destinados à compreensão de um texto falado sobre matemática, à verificação da veracidade informacional ou à organização cronológica de texto. Ao mesmo tempo, desenvolvemos a competência fonética (percetiva), discursiva (com base num discurso académico- palestra), lexical (com a aprendizagem de termos e conceitos matemáticos e definição do seu significado) e geral (conhecendo novas informações).

COMPETÊNCIAS: Competência comunicativa textual, fonética, lexical e discursiva.

Competência geral.

CAPACIDADES:

Compreensão de texto mais complexo.

Escolha da resposta correta.

Verificação da veracidade de informação.

Organização cronológica de texto.

Descrição de significado.

Derivação lexical.

Uso de sinónimos.

Aquisição de vocabulário científico.

Conhecimento de novas informações.

Trabalho com dicionários em linha.

ATIVIDADES

I. Veja e ouça com atenção a palestra VÍDEO (duração: 00:33:03 h)

https://medial.phil.muni.cz/Play/26265#!

ou (com legendas)

 $\underline{https://pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radians/v/introduction-to-radians}$

II. Após ouvir a palestra, escolha a resposta correta.

- 1. Se quisermos representar um ângulo de 180°, desenhamos uma linha reta onde temos:
 - a) um vértice de ângulo de onde partem duas semirretas coincidentes
 - b) dois vértices de ângulo de onde partem duas semirretas não coincidentes
 - c) um vértice de ângulo de onde partem duas retas não coincidentes
 - d) um vértice de ângulo de onde partem duas semirretas não coincidentes
- 2. Em alguns calendários antigos, um ano tinha:
 - a) 370 dias
 - b) 360 dias
 - c) 350 dias
 - d) 380 dias
- 3. π radianos é equivalente a:
 - a) 360 graus
 - b) 90 graus
 - c) 180 graus
 - d) 45 graus
- 4. Alguns astrónomos antigos observaram que as coisas no céu pareciam mover-se:
 - a) 1/360 avos por dia
 - b) 1/60 avos por dia
 - c) 1/600 avos por dia
 - d) 1/16 avos por dia
- 5. Em que desportos mencionados no vídeo é possível fazer uma rotação completa:
 - a) natação, patinagem artística
 - b) patinagem artística, skateboard
 - c) kitesurf, skateboard
 - d) natação, kitesurf

III. De acordo com a palestra, decida se as afirmações são verdadeiras ou falsas.

- 1. O sistema de graus é a única forma que existe para medir a amplitude de ângulos. V/F
- 2. Os Babilónios tinham um sistema de numeração de base 60.

V/F

3. A palavra raio vem do grego antigo.

V/F

4. As duas semirretas que definem um ângulo de 360° são coincidentes.

V/F

5. Radianos é uma forma alternativa de medir a amplitude de ângulos.

V/F

IV. Defina os seguintes termos aproveitando as informações retiradas do texto audiovisual e dos dicionários.

amplitude de ângulo grau semirreta vértice de ângulo radiano

V. Proponha antónimos das seguintes palavras.

dividir coincidente completo reta inteiro

VI. Coloque por ordem cronológica de 1-10 as seguintes informações de acordo com o conteúdo da palestra.

- a) Quantos radianos correspondem a 1 grau?
- b) Representação gráfica de ângulos de diferentes graus
- c) Definição de um radiano
- d) Conversão de radianos em graus
- e) Teorias sobre as origens da equivalência da rotação completa a 360°

VII. Preencha o fragmento da palestra com as palavras/expressões que identificou.

Vamos explorar um pouco mais este conceito. Vou desenhar aqui mais uma circunferencia,
mais uma circunferência aqui. Este ponto aqui é o centro. Vou desenhar aqui este
e vamos falar deste ângulo. Depois do que dissemos sobre os radianos, que ângulo será
este? Qual será a em radianos deste ângulo? Qual será a amplitude em radianos
de um ângulo que, de um ângulo que em graus tem 360 graus de
amplitude? Se nos basearmos nesta definição, qual será a amplitude deste ângulo em
radianos? Bem vamos pensar no que corresponde a este ângulo. O
arco de circunferência que corresponde a este ângulo é a circunferência inteira, corresponde
a circunferência inteira. Corresponde a toda a circunferência. Então qual é o comprimento de
uma circunferência ao comprimento do respetivo raio? Isto tem
comprimento r e se o raio da circunferência tem comprimento r, qual é o comprimento da
circunferência medido r? Bem sabemos isso, é 2πr. 2πr. Então,
voltando a pensar neste ângulo, o comprimento de arco de circunferência que lhe corresponde
quantos raios? Mede 2π raios, tendo comprimento $2\pi r$. Portanto este ângulo aqui,
este ângulo, vamos identificá-lo pela sua amplitude x. O x, neste caso, vai ser 2π radianos,
radianos, e corresponde a um arco de circunferência de de comprimento. Se
o raio medisse uma unidade, então isto seria 2π 1, 2π raios.

VIII. Aprenda palavras desconhecidas, traduzindo-as para a sua língua materna e completando o glossário conforme seja necessário.

Português	Inglês	Checo	Polaco
amplitude de ângulo	range of an angle	velikost úhlů	rozwarcie kąta
grau	degree	stupeň	stopień
Semirreta (f.)	half-line	polopřímka	półprosta
vértice de ângulo	vertex of an angle	vrchol úhlu	wierzchołek kąta
radiano	radian	radián	radian
Reta (f.)	straight line	přímka	prosta
coincidente	coincident	odpovídající	zbieżny
rotação completa	full rotation	úplná rotace	kąt pełny
triângulo equilátero	equilateral triangle	rovnostranný trojúhelník	trójkąt równoboczny
circunferência	circumference, circle	obvod	okrąg, obwód
raio	radius	poloměr	promień
comprimento	lenght	délka	długość
arco de circunferência	arc of circumference	oblouk	łuk
dividir	divide	rozdělit	dzielić

IX. Saiba mais sobre os seguintes temas, usando ligações recomendadas.

- 1. Radianos e graus https://pt-pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radian-s/v/radian-and-degree-conversion-practice (30.05.2023)
- 2. Graus para radianos https://pt-pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radians/v/we-converting-degrees-to-radians (30.05.2023)
- 3. .Radianos para graus https://pt-pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radians/v/we-converting-radians-to-degrees (30.05.2023)
- 4. Radianos e graus https://pt-pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:radians/e/degrees_to_radians (30.05.2023)
- 5. Ângulos em radianos e quadrantes https://pt-pt.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:radians/v/rotation-by-radians-and-quadrants (30.05.2023)

SOLUÇÕES

II. 1.D, 2.B, 3.C, 4.A, 5.B

III. 1.F 2.V 3.F 4.V 5.V

IV.

amplitude de ângulo – abertura angular

grau - unidade de medida de ângulos ou de arcos de circunferência

semirreta – conjunto dos pontos de uma reta que precedem (ou seguem) um ponto dado (origem da semirreta) dessa reta

vértice de ângulo – origem comum das semirretas que formam um ângulo

radiano – unidade de medida de ângulo plano do Sistema Internacional, de símbolo rad, definida como a medida do ângulo plano convexo compreendido entre dois raios de uma circunferência, que nesta determinam um arco que, retificado, tem comprimento igual ao raio da circunferência

٧.

dividir – multiplicar, unir coincidente – divergente, contrário completo – incompleto, parcial reta – curva inteiro – quebrado, parcial

V.I

1.B, 2.E, 3.C, 4.D, 5.A

VII.

Vamos explorar um pouco mais este conceito. Vou desenhar aqui mais uma circunferência, mais uma circunferência aqui. Este ponto aqui é o centro. Vou desenhar aqui este raio e vamos falar deste ângulo. Depois do que dissemos sobre os radianos, que ângulo será este? Qual será a amplitude em radianos deste ângulo? Qual será a amplitude em radianos de um ângulo que dá uma volta inteira, de um ângulo que em graus tem 360 graus de amplitude? Se nos basearmos nesta definição, qual será a amplitude deste ângulo em radianos? Bem... vamos pensar no arco de circunferência que corresponde a este ângulo. O arco de circunferência que corresponde a este ângulo é a circunferência inteira, corresponde a circunferência inteira. Corresponde a toda a circunferência. Então qual é o comprimento de uma circunferência relativamente ao comprimento do respetivo raio? Isto tem comprimento r e se o raio da circunferência tem comprimento r, qual é o comprimento da circunferência medido **em função de** r? Bem... sabemos isso, é 2πr. 2πr. Então, voltando a pensar neste ângulo, o comprimento de arco de circunferência que lhe corresponde mede quantos raios? Mede 2π raios, tendo comprimento 2π r. Portanto este ângulo agui, este ângulo, vamos identificá-lo pela sua amplitude x. O x, neste caso, vai ser 2π radianos, radianos, e corresponde a um arco de circunferência de 2π raios de comprimento. Se o raio medisse uma unidade, então isto seria 2π vezes 1, 2π raios.

VIII. INDIVIDUAL IX. INDIVIDUAL